Depression is a common psychological disorder and is frequently misdiagnosed. Currently, there is not an objective diagnostic tool for depression; clinicians must rely on symptoms of their patients in order to make a diagnosis. This study aims to provide clinical values of key biomarkers that will objectively differentiate between depressed and healthy patients. This study will analyze levels of Brain-Derived Neurotropic Factor (BDNF), Norepinephrine (NE), and cortisol, found in participant urine. Adult men and women, currently living in the northern Utah area, will comprise the sample of 100 participants. Each participant will submit a first-morning-void urine sample and respond to the standardized demographic questionnaire and depression inventory. The Beck Depression Inventory will be used to classify participants as depressed or healthy control. All analytes will be measured using enzyme-linked immunosorbent assays (ELISA). Multivariate linear regression analysis will be used to determine how well this panel of analytes can be used to predict depression. Results will find that patients who identify as depressed will have decreased BDNF and NE levels and increased cortisol levels. These analyte concentrations will also decrease and increase respectively based on severity of depression in the participant. This study hopes to show that clinical psychologists and psychiatrists can accurately diagnose depression with the aid of an objective assay of BDNF, NE, and cortisol rather than solely interpreting the subjective feelings of their patients.