Overcoming Seed Dormancy of *Ceanothus velutinus* and *Cercocarpus montanus*

Asmita Paudel¹, Youping Sun¹, Larry A. Rupp¹, John Carman¹, and Stephen L. Love²

¹Utah State University, Logan, UT 84322
²University of Idaho, Aberdeen, ID 83210

Introduction

- Native plants are useful for a wide range of conservation practices from ecological restoration to the rehabilitation of disturbed lands.
- *Ceanothus velutinus* (snowbrush ceanothus) and *Cercocarpus montanus* (Alder leaf mountain mahogany) are two Utah native plants and have potential for use in water-efficient landscape.
- Little information is available on their propagation methods.

Fig. 1: Ceanothus velutinus seeds (A) and Cercocarpus montanus seeds (B).

Objectives

- Determine the effective scarification temperature, stratification time, and suitable gibberellic acid (GA₃) concentration for breaking the double dormancy (physical and physiological) of *C. velutinus* seeds.
- Determine the optimal stratification time and the effective GA₃ concentration for breaking the physiological dormancy of *C. montanus* seeds.

Materials and Methods

Experiment I: Seed germination of *Ceanothus velutinus*

- Collected at an elevation of 975 meter, Lincoln county, Montana (Native Seed Foundation)
- Experimental conditions:
 - Completely randomized design (CRD)
 - Number of petri dishes as replication
- Seed germination test:
 - Environmental growth chamber at 25 °C and a 16-hour photo period for 2 weeks

Treatments

<table>
<thead>
<tr>
<th>Scarification temperature</th>
<th>50, 70, and 90 °C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gibberellic acid (GA₃)</td>
<td>0, 50, 250, and 500 mg/l</td>
</tr>
<tr>
<td>Stratification time</td>
<td>30, 60, or 90 days</td>
</tr>
</tbody>
</table>

Experiment II: Seed germination of *Cercocarpus montanus*

- Collected from Colorado (Sheffield's Seed Co)
- Similar methods to experiment I except scarification was not performed

Treatments

<table>
<thead>
<tr>
<th>Gibberellic acid (GA₃)</th>
<th>0, 50, 250, and 500 mg/l</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stratification time</td>
<td>30, 60, or 90 days</td>
</tr>
</tbody>
</table>

Results

Experiment I: Seed germination of *Ceanothus velutinus*

- Germination percent increased with the scarification temperature ($p < 0.0001$).
- Stratification time and GA₃ treatment also had positive effect on seed germination ($p < 0.0321$).
- Scarification at 90 °C, 60 days stratification, and 500 mg/l GA₃ had the greatest germination percent of 74.2 ± 2%.

Experiment II: Seed germination of *Cercocarpus montanus*

- Stratification for longer period ($p < 0.0001$) and gibberellic acid treatment ($p < 0.0321$) increased the germination percent.
- Seeds dipped in 50 mg/l of GA₃ and stratified for 60 days had the greatest germination percent of 64.3 ± 3.6%.

Conclusions

- Hot water treatment at 90 °C and stratification for 60 or 90 days was effective in breaking seed dormancy of *C. velutinus*. Furthermore, GA₃ also helped to increase seed germination rate.
- For *C. montanus* seeds, stratification for 60 days and GA₃ treatment at 50 mg/l was helpful to break seed dormancy.
- This experiment established a successful method for optimizing seed germination which is crucial to introduce native plants in the landscape and conserve our most important natural resource, water.

References

Acknowledgements

USDA NIFA Hatch project UTA01381, New Faculty Start-Up Funds from the Office of Research and Graduate Studies, the Center for Water-Efficient Landscaping, Utah Agricultural Experiment Station at Utah State University.